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This chapter gives a general idea about light scattering computations of 

nonspherical and irregularly shaped small particles and its importance in the 

study of realistic particle systems (for eg. atmospheric aerosols, interstellar 

dust, nano particles). This chapter briefly explains the different 

computational techniques (DDA, T-Matrix) etc. used in the characterization 

of irregular and complex geometric shapes and their applicability in light 

scattering studies.  

1. INTRODUCTION TO LIGHT SCATTERING BY 
NONSPHERICAL PARTICLES 

The light scattering studies of irregularly shaped particles presents a 

challenge for characterization of their optical properties. Scattering of light 
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by small particulate matter is a very important tool in climatology, remote 

sensing, astrophysics, and study of atmospheric aerosols etc. The scattering 

of light by spherical particles can be computed easily by the conventional 

Lorenz–Mie theory or its modifications [1]. Mie theory can also be used in 

study of nonspherical particles. But the sphericity assumption will never 

lead to accurate results, because the scattering properties of irregular 

particles differ significantly from those of volume equivalent spheres.  

Some beautiful and significant optical phenomena are results of light 

scattering by nonspherical particles such as halos, arcs, pillars and lidar 

backscatter observed for ice crystals [2] and Interstellar polarization caused 

by dust grains etc. [3]. But it’s difficult to compute the radiation and 

scattering properties of highly irregular and complex particles using 

conventional theories. Some examples of such particles are atmospheric 

aerosols, soot particles, interstellar and cosmic dust particles, dust grains 

present in the cometary tail, snow and frost crystals, ocean hydrosols, and 

biological microorganisms(for eg. diatom). It also has its applications in 

optical communications engineering, and photonics technology. 

Specifically, in near-field or nano-optics and the design of optical sensor, 

biosensors or particle surface scanners. The light scattering and radiative 

properties of nonspherical and highly irregular particles can differ 

dramatically from those of “equivalent” Mie spheres. Therefore the light 

scattering by irregularly shaped particles should be accurately computed 

and measured in order to understand the effects of particle nonsphericity on 

scattering patterns and other radiative properties [4]. 
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Fig. 1: (a) Far –field scattering by a single particle, (b) Far field 
scattering (c) Multiple scattering, by a system of randomly  
oriented particles (Figure source: Mishchenko et al.[30]). 

The development of different refined computational tools and advanced 

numerical algorithms has led to detailed understanding of the scattering 

properties of nonspherical, non homogeneous and anisotropic particles at 

visible as well as infrared and ultraviolet wavelengths. Particles 

encountered in realistic environments are not always spherical, they are 

nonspherical, nonrotational, symmetric, inhomogeneous, coated, chiral or 

anisotropic [5]. The scattering properties of nonspherical particles can be 

computed theoretically and measured experimentally, but both approaches 
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have their strengths and weaknesses. Theoretical modeling allows to run all 

the physical parameters used in the computation to run as variables for eg. 

size, shape, refractive index, orientation etc. by simple modification of the 

original code. But modeling of complex particle systems is a very tough and 

expensive work requiring high degrees of computing power and resources 

and still unable to simulate with accuracy the scattering properties of natural 

particles. Experimental measurements using visible or infrared wavelengths 

can study real particle samples, either natural or artificial. But these 

experiments need expensive instruments, and are unable to measure all the 

scattering parameters accurately at the same time. The only way to precise 

determine the optical properties of realistic sample is a combination of 

efficient theoretical and experimental approaches [6].  

 

Fig. 2: The total scattered field at P is the resultant of all the wavelets 
scattered by the regions into which the particle is subdivided (Figure 
source: Bohren & Huffman, [1]). 
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2. THEORY OF LIGHT SCATTERING 

2.1. The Parameters required for characterization of particulate matter 

The most important parameter is particle characterization is the size 

parameter. It is defined as: rx 2 , where r is the particle size (radius of 

the target particle or volume-equivalent sphere) and  is the wavelength of 

light in the scattering medium. The second most important parameter is the 

aspect ratio of the target particle, which is defined as the ratio of maximum 

to minimum particle dimensions. The third parameter is the refractive index 

(n) of the scatterer. The efficiency of a numerical technique is characterized 

by its computational complexity, that is, the dependence of the number of 

computer operations on the size parameter of the particle [5, 6]. 

All light scattering theories and numerical techniques for computing the 

scattered electromagnetic field are based on solving Maxwell’s equations, 

which is referred to as the scattering problem. The exact analytical solution 

is reduced to solving the vector Helmholtz equation for the time-harmonic 

electric field using the separation of variables technique. The incident 

electric field and the field inside the scatterer are expanded into regular 

eigenfunctions and the scattered field outside the scatterer is expanded in 

eigenfunctions that reduce to outgoing waves at infinity. Subjecting the 

resulting equations to boundary conditions the unknown expansion 

coefficients of the internal and scattered fields are determined from the 

known expansion coefficients of the incident field [7, 8]. 

The numerical techniques for computing electromagnetic scattering by 

nonspherical particles can be categorized as Differential equation methods 
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which compute the scattered field by solving the vector wave equation in 

the frequency and time domains, and the integral equation methods are 

based on the volume or surface integral counterparts of Maxwell’s 

equations. Most of the theoretical techniques compute the scattered electric 

field for a single particle in a fixed orientation, whereas practical 

applications often require knowledge of ensemble-averaging of parameters 

such as optical cross sections and scattering matrix elements.  

2.2. The scattering matrix: 

The scattering properties of a finite target can be fully described by the 

Stokes parameters  iiii VUQI ,,, for incident wave and  SSSS VUQI ,,, for 

the scattered wave. 

These parameters are related by the 44 Mueller Matrix as follows [9, 10]: 
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Where ‘S’ represents the Mueller matrix elements. Is, Qs, Us and Vs are 

stokes parameter of the scattered light. Ii, Qi , Ui and Vi are the corresponding 

parameters of incident light. The subscripts i and s refer to the incident and 

scattered beams, k is the wave vector and r is the distance from the sample 

to the detector. 

To simplify the computations of light scattering process only single 

scattering is mostly considered for randomly distributed particle systems. 

This means that particles are separated widely enough, so that each particle 
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scatters light in a particular direction irrespective of the presence of other 

particles in its vicinity and the resultant scattered field is a vector 

summation of light scattered by all the individual particles present in the 

scattering system. Due to lack of systematic phase relations between partial 

electromagnetic waves scattered by different particles the individual 

scattered intensities of the partial waves can be added without giving 

significant importance to phase.  

2.3. Randomly Oriented systems 

In the following analysis we consider scattering by an ensemble of 

randomly oriented, identical particles. Random particle orientation means 

that the orientation distribution of the particles is uniform. As a 

consequence of random particle orientation, the scattering medium is 

macroscopically isotropic, i.e., the scattering characteristics are independent 

of the incident and scattering directions ke and re , and depend only on the 

angle between the unit vectors. It is convenient to direct the Z-axis along the 

incident direction and to choose the XZ-plane as the scattering plane. 
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Fig. 3: A typical scattering system for randomly oriented particles 
(Figure source: Doicu. A.,[6]). 

The assumption of independent or single scattering greatly simplifies the 

problem of computing multiple light scattering by a collection of particles 

[11, 12]. However in the realistic scenario for a collections of randomly 

positioned particles or widely separated particle aggregate systems, 

scattering in the forward direction is always coherent and causes attenuation 

of the incident wave as it propagates through the medium [1, 9]. Also 

particles present in clusters or aggregates in close proximity to each other, 

affects the fields scattered by all other particles in the system making the 

computations more complex and rigorous. 
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Fig. 4: Scattering plane of an electromagnetic wave (Figure source: 
Mishchenko et al., [5]). 

To describe the scattering of a plane electromagnetic wave by a 

nonspherical particle in an arbitrary orientation, we must first specify the 

directions of the incident and scattered waves and the orientation of the 

particle with respect to a reference frame. Let this reference frame be a 

right-handed Cartesian coordinate system L (Laboratory reference frame) 

with orientation fixed in space, having its origin inside the particle. The 

direction of propagation of a transverse electromagnetic wave is specified 

by a unit vector n or, equivalently, by a couple   ,    ,0  is the polar 

(zenith) angle measured from the positive z axis, and   2,0  is the 
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azimuth angle measured from the positive x axis in the clockwise direction, 

looking in the direction of the positive z axis [5]. 

3. RADIATIVE TRANSFER EQUATION FOR RANDOMLY 
ORIENTED SYSTEM 

The general radiative transfer equation for a nonemitting medium 

comprising sparsely and randomly distributed, spherical or arbitrarily 

oriented nonspherical particles is as follows [12]: 

         nInn,ZnnInK
nI  

4

00 dnn
ds

d

  ………… (2) 

where I is the intensity vector (radiance vector) of scattered light 

propagating in the direction n, ds path length element along n . The first 

term on the right-hand side of this equation describes the change of the 

specific intensity vector caused by extinction, whereas the second term 

describes the contribution of light illuminating a small volume element 

from all directions n and scattered in the direction n. The radiative transfer 

equation must be supplemented by boundary conditions appropriate for 

addressing a particular physical problem. 

4. COMPUTATIONAL CHARACTERIZATION TECHNIQUES      
 FOR  NONSPHERICAL  PARTICLES  

Different computational techniques have been developed for study of 

scattering by small particulate matter both spherical and non-spherical. The 

applicability of these methods are determined by the size of the particle 

relative to the wavelength of the incident radiation i.e. called size parameter. 

Classical methods like the finite-difference method, finite element method 
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or integral equation method led to computational tools that are expensive as 

they require higher degrees of computational resources. This significantly 

restricts their use in studying electromagnetic scattering by large particles. 

One of the method which is extensively used is null-field method for 

rigorous computations of electromagnetic scattering by both single and 

complex particulate systems significantly larger than the incident 

illuminating wavelength. In many applications, it is highly desirable in for 

thousand of particles in random orientation in complex systems and particle 

aggregates dispersed in both shapes and sizes in different radiative 

environments. 

Some of these techniques are briefly explained here: 

4.1. Finite Element Method (FEM) 

The finite element method (abbreviated as FEM) is a numerical technique to 

obtain an approximate solution to a class of problems governed by elliptic 

partial differential equations or boundary value problems. The finite 

element method converts the elliptic partial differential equation into a set 

of algebraic equations. It computes the scattered electric field by 

numerically solving the vector Helmholtz equation using a set of boundary 

conditions at the particle surface [13, 14]. However, the disadvantage of 

FEM is that computations must be repeated for each new direction of 

incidence. So in order to simplify the scattering problem particle and 

orientation symmetries must be used. 

The advantages of FEM are that it permits the modeling of arbitrarily 

shaped and inhomogeneous particles, easily executable, and avoids the 
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singular-kernel problem typical of the integral equation methods. However 

its main disadvantage is that computations are time consuming and limited 

to size parameters less than about 10. The finite spatial discretization and 

the approximate absorbing boundary condition make FEM poorly suitable 

to achieve numerical accuracy.  

A recent modification of finite-element method can be used to simulate 

light scattering from arrays of high aspect-ratio nano-posts and FinFETs 

[15]. 

4.2. Finite-Difference Time-Domain method (FDTD)  

The Finite-Difference Time-Domain method (FDTD) is a very popular 

technique for the solution of electromagnetic problems. It has been 

extensively used to study scattering from metal objects and dielectrics, 

antennas, microstrip circuits, and electromagnetic absorption in the human 

body exposed to radiation. The main advantage of FDTD method is that it is 

extremely simple, even for programming a three-dimensional code. The 

technique was first proposed by K. Yee [16, 17]. FDTD is based on 

discretizing the Maxwell’s equations with central difference approximations 

both in time and space. It’s simply implies the allocation of electric and 

magnetic field components in space, and then allowing a time evolution. 

FDTD basically calculates electromagnetic scattering in the time domain by 

directly solving Maxwells time dependent curl equations [16]. The space 

and time derivatives of the electric and magnetic fields are approximated 

using a finite difference scheme with space and time discretizations selected 

to bound computational errors and ensuring numerical stability of the 
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algorithm.The scattering particle is embedded in a finite computational 

domain, and absorbing boundary conditions are applied to model scattering 

in free space [5]. In FDTD there is no need to solve a large number of linear 

equations, so lesser memory requirements. FDTDM is popular recently 

because of its simplicity and ease of implementation. It holds significant 

advantage over a number of other numerical codes in terms of allowed size 

parameter. 

4.3. Discrete Dipole Approximation (DDA) 

The Discrete Dipole Approximation (DDA) originally known as the 

coupled dipole method) developed by [18] is based on approximating the 

target particle into a number (N) of elementary polarizable units called 

dipoles. The resultant field exciting a dipole is a superposition of the 

external incident field and the fields scattered by all other neighboring 

dipoles considering all possible internal interactions within the particle 

volume. This allows one to write a system of N linear equations for N fields 

exciting the N number of dipoles. The numerical solution of this system is 

used to compute N partial fields scattered by the dipoles and, thus, the total 

scattered field is obtained after rigorous numerical computations. The 

discrete-dipole approximation (DDA) is a flexible and powerful technique 

for computing scattering and absorption by targets of arbitrary geometry 

(i.e. of any kind of irregular and complex shapes). The development of 

efficient algorithms and the availability of inexpensive computing power 

together have made DDA one of the most extensively used methods of 

choice for many scattering problems. DDA calculations require choices for 
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the locations and the polarizabilities of the point dipoles used to represent 

the target volume. Recent development in DDA allows solution of problems 

involving very large values of dipole numbers. These developments 

particularly use complex-conjugate gradient (CCG) methods and fast-

Fourier-transform (FFT) techniques, for very fast and efficient 

computations. DDA can be used to compute highly accurate results for 

targets with dielectric constants (m) with moderate values 2m . An user 

friendly portable FORTRAN implementation of the DDA, the program 

DDSCAT has been developed by Draine and Flatau [19] is freely available 

as a open source code. The use of CCG and FFT in the original algorithms 

permits calculations for N as large as 510  so that scattering problems with 

size parameter 10k can be studied with scientific workstations using 

parallel computations [20, 21]. The most important advantage of DDA is its 

applicability to any arbitrarily shaped, inhomogeneous, and anisotropic 

particles. The disadvantages of the technique are limited numerical 

accuracy, especially for scattering matrix elements; slow convergence of 

results with increasing number of dipoles N; and the need to repeat the 

entire calculation for each new incident direction(for DDA with CGM-FFT) 

[20, 22, 23]. These factors have made DDA computations time consuming, 

especially for particle with larger size parameters and for a large number of 

orientation distributions, which in turn limited the particle size parameter to 

relatively small values. Regardless of the drawbacks it is the best choice for 

calculations of scattering, matrix, cross sections and efficiencies for 

particles with arbitrary geometry.  
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4.4. T-Matrix Method 

The null-field method (also known as the extended boundary condition 

method, Schelkunoff equivalent current method, Eswald–Oseen extinction 

theorem and T-matrix method) has been developed by [24, 25] as a 

technique for computing electromagnetic scattering by perfectly conducting 

and dielectric particles especially for some standard shapes. The T- Matrix 

approach has been used to study a number of arbitrary geometries from 

multilayered and composite particles to chiral particles [26, 27]. It’s been 

also used in study of multiple scattering in a random media [28]. And it’s 

numerical stability has been vastly improved in computations for particles 

with extreme geometries [29]. Several computer programs has been 

developed for averaging scattering characteristics over particle orientations 

and at the same time to compute electromagnetic scattering by 

axisymmetric particles in fixed and random orientations have been 

designed. 

The particles that can be treated with T-Matrix are as follows- 

Homogeneous, dielectric (isotropic, uniaxial anisotropic, chiral), and 

perfectly conducting particles with axisymmetric and nonaxisymmetric 

surfaces, Inhomogeneous, layered and composite particles,, Clusters of 

arbitrarily shaped particles, and Particles on or near a plane surface. The 

null-field method is used to compute the T matrix of each individual 

particle and the T-matrix formalism is employed to analyze systems of 

particles. There is a number available FORTRAN code in public domain 

and the Internet available computer programs developed by [30, 31]. For 

specific applications, other computer codes have been developed by various 
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research groups, but these programs are currently not publicly available as 

open source codes. The T -matrix method (TMM) is based on expanding the 

incident field in Vector Spherical Wavefunctions (VSWF) regular at the 

origin and expanding the scattered field outside a circumscribing sphere of 

the scatterer in VSWFs regular at infinity. The T matrix transforms the 

expansion coefficients of the incident field into those of the scattered field 

and, if known, can be used to compute any scattering characteristic of a 

nonspherical particle [6]. 

T- Matrix can be applied to any particle shape, although TMM 

computations are much simpler and more efficient for rotationally 

symmetric particles. Almost all existing computer codes assume rotationally 

symmetric shapes both smooth, for example, spheroids and so-called 

Chebyshev particles, and sharp edged, for example, finite circular cylinders 

[32]. The loss of efficiency for particles with large aspect ratios or shapes 

without axial symmetry is the main disadvantage of TMM. The advantage 

is that it is highly accurate, fast and applicable to particles with equivalent 

sphere size parameters exceeding 100 [33]. The elements of the T matrix are 

independent of the incident and scattered fields and depend only on the 

shape, size parameter, and refractive index of the scattering particle and on 

its orientation with respect to the reference frame, so that the T matrix need 

be computed only once and then can be used in computations for any 

directions of incident and scattered light waves. Recent developments 

including an analytical orientation-averaging approach that makes 

computations for randomly oriented, rotationally symmetric particles as fast 

as those for a particle in a fixed orientation and later also extended to 
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arbitrary clusters of spheres. Another analytical procedure was developed 

for computing the extinction matrix for nonspherical particles axially 

oriented by magnetic, electric, or aerodynamic forces [34, 35]. 

4.5. Geometric Optics Approximation (GOA) 

The geometric optics approximation (GOA) (otherwise known as the ray 

tracing or ray optics approximation) is a universal approximate method for 

computing light scattering by particles much larger than wavelength of the 

incident electromagnetic wave. GOA is based on the assumption that the 

incident plane wave can be represented as a collection of independent 

parallel rays. The history of each ray impinging on the particle surface is 

traced using the Snell law and Fresnel’s equations. The sampling of all 

escaping light rays into predefined narrow angular bins supplemented by 

the computation of Fraunhofer diffraction of the incident wave on the 

particle projection yields a quantitative representation of the particle 

scattering properties. GOA is particularly simple for spheres because the ray 

paths remain in a plane. For other particles, ray tracing is usually performed 

using a Monte Carlo approach [36, 37]. The main advantage of GOA is that 

it can be applied to essentially any arbitrary shape. However, GOA is 

always an approximate method, and its range of applicability in terms of the 

smallest size parameter should be checked by comparing GOA results with 

exact numerical solutions of Maxwell’s equations.  

The very existence and use of many numerical techniques for computing 

electromagnetic scattering by nonspherical particles indicate that there is no 

single technique that provides the best results in all cases for any shape and 
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orientations. Depending on a particular application each approach may 

prove to be more appropriate in terms of efficiency, accuracy, and 

applicability to the particle physical parameters. Furthermore, it is very 

difficult to develop and apply simple and objective criteria in order to 

examine the relative performance of different numerical techniques which 

already find its way in a wide range of applications. The availability of a 

well-documented public-domain computer code is also an important factor 

to take into account other than Mie theory we can consider DDA and T- 

Matrix in this case. Benchmark results for spheroids, finite circular 

cylinders, Chebyshev particles, and two-sphere clusters in fixed and random 

orientations were reported a number of times [38, 39]. All these available 

techniques are simple in concept and software implementation and seem to 

have commendable performance characteristics. But the simplicity and 

flexibility of these techniques are often accompanied by a substantial loss in 

efficiency and accuracy and by stronger practical limitations on the 

maximal particle size parameter. Further work is obviously required in 

order to develop a method that is efficient, flexible, and applicable to a wide 

range of size parameters. 

5. OPEN SOURCE COMPUTATIONAL CODES  

Some of the most popular and widely used codes available in the public 

domain are: 

5.1. T -matrix Program 

A FORTRAN computer program has been written to solve various 

scattering problems in the framework of the null-field method. Essentially, 
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the basic principle of the code is that it performs a convergence test and 

computes the T-matrix and the scattering characteristics of particles with 

uniform orientation distribution functions. An important part of the T -

matrix calculation is the convergence procedure over the maximum 

expansion order rankN , maximum azimuthal order rankM  and the number of 

integration points intN . In fact, these are the input parameters and their 

optimal values must be specified by the user. This is accomplished by 

repeated convergence tests based on the analysis of the differential 

scattering cross-section [5]. The scattering characteristics depend on the 

type of the orientation distribution function. By convention, the uniform 

distribution function is called complete if the Euler angles ,  and   are 

uniformly distributed in the intervals (0 to 360 ), ( 0 to 180 ) and (0 to 360 ), 

respectively. The normalization constant is 4  for axisymmetric particles 

and 28 for nonaxisymmetric particles. The input parameters for this code 

are particle radius, real part of particle refractive index, imaginary part of 

particle refractive index, real part of medium refractive index and incident 

wavelength, or simply size parameter for calculations for a single particle. 

The output parameters are scattering angle ( ) and all non zero elements of 

the scattering matrix. The size paramater (x), scattering efficiency ( scaQ ), 

extinction efficiency ( extQ ), backscattering efficiency ( backQ ), absorption 

efficiency ( absQ ), radiation pressure ( prQ ), single scattering albedo and 

asymmetry parameter (g).  
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5.2. DDSCAT Program 

DDSCAT 7.3 is a freely available open-source Fortran-90 software package 

applying the “discrete dipole approximation” (DDA) to calculate scattering 

and absorption of electromagnetic waves by targets with arbitrary 

geometries and complex refractive index. The targets may be isolated 

entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of 

“target unit cells”, which can be used to study absorption, scattering, and 

electric fields around arrays of nanostructures. DDSCAT allows accurate 

calculations of electromagnetic scattering from targets with size parameters 

252  effa provided the refractive index m is not large compared to unity

 21 m . DDSCAT includes support for MPI, OpenMP, and the IntelR 

Math Kernel Library (MKL). DDSCAT supports calculations for a variety 

of target geometries (e.g., ellipsoids, regular tetrahedra, rectangular solids, 

finite cylinders, hexagonal prisms, etc.). Target materials may be both 

inhomogeneous and anisotropic. It is straightforward for the user to 

“import” arbitrary target geometries into the code. DDSCAT automatically 

calculates total cross sections for absorption and scattering and elements of 

the Scattering intensity matrix for specified orientation of the target relative 

to the incident wave, and for specified scattering directions. DDSCAT 7.3 

can calculate scattering and absorption by targets that are periodic in one or 

two dimensions. DDSCAT can calculate and store electric and magnetic 

values E and B throughout a user-specified rectangular volume containing 

the target. A Fortran-90 code ddapostprocess to support postprocessing of 

P, and nearfield E and B, is included in the software package. DDSCAT is 
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intended to be a versatile tool, suitable for a wide variety of applications 

including studies of interstellar dust, atmospheric aerosols, blood cells, 

marine microorganisms, and nanostructure arrays. The principal advantage 

of DDA is that it is completely flexible regarding the geometry of the target, 

being limited only by the need to use an interdipole separation (d) small 

compared to (1) any structural lengths in the target, and (2) the wavelength. 

The second criterion is adequately satisfied if; 

1kdm   ............ (3) 

where m is the complex refractive index of the target material, and 

2k , where   is the wavelength in vacuum. This criterion is valid 

provided 31 m or so. When imaginary part of m becomes large, the 

DDA solution tends to overestimate the absorption cross section absC , and it 

may be necessary to use interdipole separations d smaller than indicated by 

eq. (1). If accurate calculations of the scattering phase function (e.g., radar 

or lidar cross sections) are desired, a more conservative condition

5.0kdm . Let V be the actual volume of solid material in the target. If the 

target is represented by an array of N dipoles, located on a cubic lattice with 

lattice spacing d, then 3NdV  . We characterize the size of the target by 

the “effective radius”   3
1

43 Vaeff  the radius of an equal volume sphere. 

A given scattering problem is then characterized by the dimensionless “size 

parameter”  

 effeff akax 2
  …….(4) 
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Practical considerations of CPU speed and computer memory currently 

available on scientific workstations typically limit the number of dipoles 

employed to 610N (limitations on N arise due to available RAM). It is 

therefore clear that the DDA is not suitable for very large values of the size 

parameter x, or very large values of the refractive index m. The primary 

utility of the DDA is for scattering by dielectric targets with sizes 

comparable to the wavelength [19, 20].  

DDA mainly calculates:  

1. Absorption and Scattering by Finite Targets. 

2. Absorption and Scattering by Periodic Arrays of Finite Structures. 

3. Application to Targets in Dielectric Media. 

 

Fig. 5: A typical Light scattering set up. (Image source: LS 
instruments, [http://www.lsinstruments.ch/])  
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6. LIGHT SCATTERING EXPERIMENTATIONS  

Existing measurements of electromagnetic scattering by nonspherical 

particles are constrained by the state of source and detector technology and 

the lack of windows in the spectrum of Earth’s atmosphere, and 

traditionally fall into two categories: 

1. Scattering of visible and infrared light by particles with sizes ranging 

from a few nanometers to several hundred micrometers. 

2. Microwave scattering by millimeter- and centimeter-sized objects. 

Visible and infrared measurements involve relatively simpler, cheaper, and 

more portable instrumentation and can be performed in the field as well as 

in the laboratory. Microwave experiments, by contrast, require expensive 

instrumentations. 

In a typical light scattering experimental setup for measuring the full 

scattering matrix using visible or infrared light, the beam produced by a 

light source (usually a laser) passes a linear polarizer and a polarization 

modulator and then illuminates particles contained in a jet stream or a 

scattering chamber. Light scattered by the particles at an angle passes a 

through a quarter-wave plate (optionally) and a polarization analyzer before 

its intensity is measured by a detector. It is assumed that the scattering plane 

acts as the plane of reference for defining the Stokes parameters. The 

Mueller matrices of the polarizer, modulator, quarterwave plate, and 

analyzer depend on their orientation with respect to the scattering plane and 

can be precisely varied. Several measurements with different orientations of 

the optical components with respect to the scattering plane are required for 

the full determination of the scattering matrix. But Visible and infrared 
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measurements often suffer from the inability to accurately characterize the 

size and shape of scattering particles. Another serious problem is that the 

arrangement of the light source and the detector usually avoids 

measurements at scattering angles close to 0  and 180 because the intense 

laser light may destroy the detector at those extreme angles [5, 9]. 

Extinction cross-sectional measurements have traditionally suffered from 

the problem that a detector with a finite aperture picks up some of the light 

scattered by particles in the forward direction. Early scattering experiments 

used unpolarized incident light and were limited to measurements of the 

scattered intensity and the degree of linear polarization. Despite the 

availability of advanced experimental techniques, the number of 

measurements of the complete scattering matrix remains relatively small 

due to the complexities of using a number of combinations of analyzer and 

polarizers to get the scattering parameters. 

7. CONCLUSIONS AND FUTRUE SCOPES OF NON-SPHERICITY 
STUDIES IN LIGHT SCATTERING  

The most important reason for modeling polydisperse samples both in size 

and shape rather than monodisperse, is that computations and measurements 

of light scattering will be more realistic considering the natural particle 

systems are often distributed over a range of size, shapes and orientations. 

The second reason is the presence of the complicated and highly variable 

interference structure for monodisperse particles in a fixed orientation, 

which makes it essentially impossible to use computations for monodisperse 

particles in order to derive useful conclusions about the effect of 
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nonsphericity on light scattering. Studies shows that averaging over sizes 

for spheres and averaging over orientations and sizes for nonspherical 

particles largely removes the typical interference structures in scattering 

patterns and enables meaningful comparisons of the scattering properties of 

realistic particles with theoretical models. All characteristics of light 

scattering substantially depend on the morphology, constituent material, and 

size of particles. It is very important to perform accurate modeling, 

computations and numerical simulations of irregularly shaped particles for 

realistic and highly effcicient interpretationse of natural particles, 

atmospheric aerosols, terrestrial and interstellar dust, nanoparticle systems 

which are highly irregular and complex in morphology. It is desirable to 

develop more advanced and refined algorithms to compute the optical and 

physical properties of non-spherical particles applicable in light scattering 

studies of small particulate matter.  
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